
On the Design of a Maintainable Software
Development Kit to Implement Integration Solutions

Rafael Z. Frantza,∗, Rafael Corchuelob, Fabricia Roos-Frantza

a Department of Exact Sciences and Engineering, Unijuí University.
Rua do Comércio, 3000. Ijuí 98700-000, RS. Brazil.

b ETSI Informática, University of Seville.
Avda. Reina Mercedes, s/n. Sevilla 41012. Spain.

Abstract

Companies typically rely on applications purchased from third parties or de-
veloped at home to support their business activities. It is not uncommon
that these applications were not designed taking integration into account.
Enterprise Application Integration provides methodologies and tools to de-
sign and implement integration solutions. Camel, Spring Integration, and
Mule range amongst the most popular open-source tools that provide sup-
port to implement integration solutions. The adaptive maintenance of a soft-
ware tool is very important for companies that need to reuse existing tools to
build their own. We have analysed twenty five maintainability measures on
Camel, Spring Integration, and Mule. We have conducted an statistical anal-
ysis to confirm the results obtained with the maintainability measures, and
it follows that these tools may have problems regarding maintenance. These
problems increase the costs of the adaptation process. This motivated us to
work on a new proposal that has been carefully designed in order to reduce
maintainability efforts. Guaraná SDK is the software tool that we provide to
implement integration solutions. We have also computed the maintainability
measures regarding Guaraná SDK and the results suggest that maintaining
it is easier than maintaining the others. Furthermore, we have conducted
an industrial experience to demonstrate the application of our proposal in
industry.

∗Corresponding author
Email addresses: rzfrantz@unijui.edu.br (Rafael Z. Frantz), corchu@us.es

(Rafael Corchuelo), frfrantz@unijui.edu.br (Fabricia Roos-Frantz)

Preprint submitted to Elsevier September 20, 2015

Rafael Z. Frantz
Retângulo

Rafael Z. Frantz
Texto
This is a draft version. Full version availabable at:http://dx.doi.org/10.1016/j.jss.2015.08.044Journal of Systems and Software.Please, check the journal web site to download full and final version.



Keywords: Enterprise Application Integration; Integration Framework.

1. Introduction

Companies rely on applications to support their business activities. Fre-
quently, these applications are legacy systems, packages purchased from third
parties, or developed at home to solve a particular problem. This usually
results in heterogeneous software ecosystems, which are composed of ap-
plications that were not usually designed taking integration into account.
Integration is necessary, chiefly because it allows to reuse two or more appli-
cations to support new business processes, or because the current business
processes have to be optimised by interacting with other applications within
the software ecosystem. Enterprise Application Integration provides method-
ologies and tools to design and implement integration solutions. The goal of
an Enterprise Application Integration solution is to keep a number of appli-
cations’ data in synchrony or to develop new functionality on top of them,
so that applications do not have to be changed and are not disturbed by the
integration solution (Hohpe and Woolf, 2003).

In the last years, several tools have emerged to support the design and im-
plementation of integration solutions. Hohpe and Woolf (2003) documented
many patterns found in the development of integration solutions. These
patterns basically aim to support three core concepts, namely: pipes, fil-
ters, and resource adapters. Camel, Spring Integration, and Mule range
amongst the most popular open-source tools that provide support for some
of these integration patterns. Camel provides a fluent API (Fowler, 2010)
that software engineers can use programmatically or by means of a graphical
editor. In both cases, the integration solution is implemented using a Java,
Scala, or XML Spring-based configuration files. Spring Integration was built
on top of the Spring Framework container, and provides a command-query
API (Fowler, 2010). This tool can be used programmatically or by means of
a graphical editor. Integration solutions are implemented using either Java
code or an XML Spring-based configuration file. The architecture of Mule
got inspiration from the concept of enterprise service bus. Software engineers
count on a command-query API (Fowler, 2010) to use this tool programmat-
ically, or a workbench to design and implement integration solutions using
a graphical editor. Integration solutions are implemented using either Java
code or an XML Spring-based configuration file. In earlier versions, Mule

2



supported a limited range of integration patterns; version 3.0 resulted in a
complete re-design whose focus was on supporting the majority of integration
patterns. As of the time of writing this article, Camel, Spring Integration,
and Mule are at version 2.7.1, 2.0.3, and 3.1, respectively. In the rest of the
article, we implicitly refer to these versions.

We are concerned with maintainability. According to the IEEE (1990),
maintenance can be classified as corrective, perfective, and adaptive. Cor-
rective maintenance aims to repair software systems to eliminate faults that
might cause them to deviate from their normal processing. Perfective mainte-
nance aims to modify a software system, usually to improve the performance
of current functionalities or even to improve the maintainability of the over-
all software system. Adaptive maintenance focuses on adapting a software
system to use it in new execution environments or business processes.

In this article, we are interested in adaptive maintenance, which is very
important for companies that need to reuse existing tools to build their
own (Chen and Huang, 2009). Many companies rely on open-source tools
that can be adapted to a specific context within their business domain. For
example, a company that develops Enterprise Application Integration solu-
tions may need tools that focus on specific contexts such as e-commerce,
health systems, financial systems, and insurance systems to meet standards
and recommendations like RosettaNet, HL7, Swift, and HIPAA, respectively.
Other authors have evaluated open-source tools from a performance point of
view (García-Jiménez et al., 2010); we think that our work is complementary.

It is not new that how a software system was designed and implemented,
has an impact on its maintenance costs (Epping and Lott, 1994; Jorgensen,
1995; Bergin and Keating, 2003; Schneidewind, 1987). International stan-
dards such as ISO 9126-1 (ISO/IEC, 2001) or more recent ISO 25010 (ISO/IEC,
2011) define quality models that help to understand what may have an impact
on the maintainability of software systems. According to these standards, the
maintainability of a software system can be influenced by the amount of effort
to change the system (Changeability), the capability of a software to avoid
collateral effects produced by changes on it (Stability), the ability to identify
and diagnose failures (Analysability), and the effort to verify the software
after changes (Testability). In both design and implementation, software
engineers need to pay attention to readability, understandability, and com-
plexity, since they are related to several subcharacteristics that characterise
maintainability. Thus, the resulting models and source code must be easy to
read and understand, because it is very common that the people who work on

3



them shall not maintain them. The complexity of the algorithms should be
kept low, not only for performance reasons, but because it makes it easier for
a software engineer to follow their execution flows and debug them. Thus, to
reduce the costs involved in the adaptation of a software system to a specific
context, it is very important that the software system was designed taking
into account issues that have a negative impact on maintenance.

How costly it is to maintain a tool depends on a variety of measurable
properties. We have computed these measures on Camel, Spring Integra-
tion, and Mule, and the results do not seem promising enough. The focus
of this article is only on the core implementation of these proposals, which
have similar functionalities, since the core aim at providing support for the
integration patterns documented by Hohpe and Woolf (2003). The results
motivated us to work on a Software Development Kit (SDK) to which we re-
fer to as Guaraná SDK1. The design decisions and the implementation of the
core of Guaraná SDK had always maintainability in mind. The result is that
its design provides better values for the maintainability measures regarding
its core implementation, which suggests that its core is more maintainable
and thus easier to adapt for a particular context than the core implementation
of Camel, Spring Integration, or Mule. The core of our proposal also aims
at providing support for the integration patterns. The core of Guaraná SDK
is composed of two layers, namely: the framework and the toolkit. The for-
mer provides a number of classes and interfaces that provide the foundation
to implement tasks, adapters, and workflows, as well as a runtime system
to which we deploy and run the integration solutions; the latter extends
the framework to provide an implementation of tasks and adapters that is
intended to be general purpose.

A six-page abstract regarding our results was presented in Frantz and
Corchuelo (2012); in this article, we extend our preliminary paper as follows:
we analyse sixteen additional maintainability measures, we analyse an addi-
tional wide-spread open-source tool, Mule, we provide a statistical analysis
based on Kolmorogov-Smirnov’s test, Shapiro-Wilk’s test, Iman-Davenport’s
test, and Bergmann-Hommel’s test to confirm our intuitive conclusion from
the results obtained with the maintainability measures, we provide a com-
prehensive description of each layer of Guaraná SDK, and we demonstrate
our proposal by means of an industrial experience that has been developed

1Guaraná technology is available at http://www.guaranasolutions.com.

4

http://www.guaranasolutions.com


Figure 1: Packages of which our framework is composed.

in co-operation with a spin-off company. We have also developed a domain-
specific language that is intended to facilitate designing integration solutions
at a high level of abstraction (Frantz et al., 2011).

The rest of the article is organised as follows: Section 2 presents the
framework layer of Guaraná SDK; Section 3 presents the toolkit layer; Sec-
tion 4 presents the experimental study we conducted; Section 5 presents an
industrial experience on which we have worked; finally, Section 6 reports on
our main conclusions.

2. The framework layer

In this section, we describe the framework layer. Figure 1 provides an
overview of this layer by showing the six packages of which it is composed.
In the following subsections we describe each package.

2.1. Messages
Messages are used to wrap the data that is manipulated in an integra-

tion solution. They are composed of a header, a body and one or more
attachments, cf. Figure 2.

The header includes custom properties and the following pre-defined prop-
erties (not shown in Figure 2 for simplicity): message identifier, correlation
identifier, sequence size, sequence number, return address, expiration date,
message priority, message type, and list of ancestors. The message identi-
fier is represented using an immutable universally unique identifier value of
128-bits, which is automatically assigned to every message when they are
created. The correlation identifier holds the identifier of another message to
which the current message is correlated. Sequence size and sequence number
are used to identify a message in a sequence of messages so that they can

5



Figure 2: Message model.

be grouped. The expiration date allows to set a deadline after which a mes-
sage is considered outdated for further processing. The message priority is
an enumerated value, namely: lowest, low, normal (default), high, and high-
est. The message type is an enumerated value that indicates whether the
message represents a command, an event (default), a request, or a response.
A command message aims to invoke an operation at its destination without
expecting any responses; an event message is used for asynchronous notifica-
tion purposes and carries data that keeps applications up to date; a request
message is similar to a command message, however it always expects a reply
that is a response message. The list of ancestors allows to track which mes-
sages originate from which ones; this is important in order to find out which
messages have been processed as a whole and form a so-called correlation.

The body holds the payload data, whose type is defined by the template
parameter in the message class. Attachments allow messages to carry extra
pieces of data associated with the payload, e.g., an image or an e-mail mes-
sage. Data in the attachments are not intended to be processed, which is not
a shortcoming at all; bear in mind that messages are defined by the users,
so they can freely decide which information is stored in the body and which
information is carried forward as attachments.

Messages implement two interfaces so that they can be serialised and
compared, respectively. Serialisation is required to deep copy, to persist, and
to transfer messages; comparison enables the integration solution to process
them according to their priority.

6



Figure 3: Task model.

2.2. Tasks
This package provides the foundations to implement domain-specific tasks

in specialised toolkits, cf. Figure 3. Roughly speaking, a task models how
a set of inbound messages must be processed to produce a set of outbound
messages, e.g., routing the inbound messages, modifying them, transform-
ing them, performing time-related actions, stream-oriented actions, mapping
them to/from objects, or reading and writing messages, to name a few cate-
gories that are supported by the toolkit introduced in Section 3.

Tasks communicate indirectly by means of slots to which they have access
by means of so-called gateways. A slot is an in-memory priority buffer that
helps transfer messages asynchronously so that no task has to wait until the
next one is ready to start working. Gateways act like a connection point
between a slot and a task, by providing an interface to add/take messages
to/from slots.

Tasks become ready to be executed according to a time criterion or a
slot criterion. In the former case, a task becomes ready to be executed
periodically, after a user-defined period of time elapses since it became ready
for the last time; in the later case, it becomes ready every time there is a
new message available in every input slot. Note that becoming ready for
execution just implies that the task is flagged so that the Runtime System
can assign a thread to execute it; this does not entail that the task produces a
set of outbound messages, but that it can examine its input slots and perform
an action if the appropriate messages are found. For instance, a merger is
a task that reads messages from two or more slots and merges them into
one slot; this task can transfer messages as they are available. Contrarily,
a context-based content enricher is a task that reads a base message and
a context message from two different slots and uses the later to enrich the
former; note that such a task cannot become ready to perform its enrichment

7



Figure 4: Port model.

action until the base and the context messages are simultaneously available.
Both slots and tasks are observable objects, which means that they can

notify other objects of changes to their state; in addition, tasks are observer
objects since they monitor slots.

2.3. Ports
Ports abstract processes away from the communication mechanism in

an inter-process communication or in the communication of the integration
solution with an application, cf. Figure 4.

Note that every port must be associated with a process, and that we
distinguish between entry and exit ports. The former are ports that allow
to read messages from an application or a process; the latter are ports that
allow to write a message to a process or an application.

Internally, ports are composed of tasks and one of them must be a com-
municator. Communicators are the tasks that allow to actually read or write
a message, namely: in communicators are used to read a message in raw form
from a process or an application; contrarily, out communicators are used to
write a message in raw form to a process or an application. By raw form, we
mean a stream of bytes that is understood by the corresponding process or
application. Inside ports, communicators interact with a pipeline of stream-
oriented tasks, which also includes a mapper task. An in communicator
passes every message read on to the pipeline; contrarily, an out communi-
cator receives messages from the pipeline to write them. The pipeline is
used as a pre-/post-processor that decrypts/encrypts, decodes/encodes, or
unzips/zips this stream of bytes. The pipeline in an entry port ends with a
mapper task that transforms the resulting stream of bytes into a message;
the pipeline in an exit port begins with a mapper that transforms a message

8



Figure 5: Process model.

into a stream of bytes.
Note that ports also have a so-called inter-slot. We use this term to refer

to the slots that allow the last task in an entry port to send messages to the
first task in a process or the last task in a process to send messages to the
first task in a port.

The ITaskContainer interface defines an interface every container of tasks
must implement. It basically allows to add, remove, get, search, and count
tasks. In addition, this interface extends the Observer Java interface so that
a container centralises notifications received from its internal tasks. This
feature is important because containers can then be notified about tasks that
are ready to be executed. Not only implement ports the ITaskContainer, but
they are also observable elements, i.e., they can both observe and produce
notifications.

2.4. Processes
Processes are the central processing units in an integration solution,

cf. Figure 5. They are composed of ports and tasks, implement interface
ITaskContainer, and extend class Observable. The reason why processes are
observable is that they are just an abstraction that helps organise groups
of tasks that co-operate to achieve a goal; from the point of view of the
Guaraná SDK, they are just a container that reports which of their tasks are
ready for execution to an external observer. A process may have several ob-
servers, e.g., to log or to monitor its activities; however, the most important
one is a Runtime System, which we describe in the following section.

Processes serve two purposes, namely: there are processes that allow to
wrap applications and processes that allow to orchestrate a workflow. The
former are reusable processes that endow an application with a message-

9



Figure 6: Adapter model.

oriented API that simplifies interacting with it. Implementing such a wrap-
ping process may range from using a JDBC driver to interact with a database
to implementing a scrapper that emulates the behaviour of a person who in-
teracts with a user interface. Orchestration processes, on the contrary, are
intended to orchestrate the interactions with a number of services, wrapping
processes, and other orchestration processes. Independently from their role,
processes are composed of ports and tasks.

2.5. Adapters
This package provides the foundations to implement adapters in spe-

cialised toolkits, cf. Figure 6. An adapter is a piece of software that imple-
ments the low-level communication protocol that is necessary to interact with
the processes or applications involved in an integration solution. A commu-
nication protocol may range from an RPC-based protocol over HTTP to a
document-based protocol implemented on a database management system.
Communicators rely on adapters to carry out their task. Whereas in com-
municators have to use adapters that conform to the IEntryAdapter interface,
out communicators have to use adapters that conform to the IExitAdapter in-
terface. These interfaces are provided by the framework layer and describe
the operations used to read and write messages in raw form. The former
interface specifies a read() operation that returns a Message that wraps the
data to be manipulated in an integration solution, and the latter specifies a
write() operation that takes a Message as input and writes it to a process or
an application.

2.6. The Runtime System
The model of our Runtime System is presented in Figure 7. Scheduler is

the central class since its objects are responsible for coordinating all of the
activities in an instance of our Runtime System. Note that this class is not a
singleton since we do not preclude the possibility of running several instances

10



Figure 7: Task-based runtime model.

Figure 8: Initialising the Runtime System.

concurrently. At runtime, a scheduler owns a work queue, a list of workers,
and three monitors.

The work queue is a priority queue that stores work units to be processed.
A work unit has a reference to a task and a scheduled execution time before
which it cannot execute. Note that class Task is abstract, which means that
our Runtime System is not bound with a particular set of tasks; this allows
to create specific-purpose task toolkits that can be plugged into the Runtime
System. Usually, the scheduled execution time of a work unit is set to the

11



current time, which means that the corresponding task can execute as soon as
possible; if it is set to a time in future, then the corresponding task is delayed
until that time has elapsed. This is very useful to implement tasks that need
to execute periodically, e.g., a communicator that polls an application every
minute.

Class Worker extends the standard Thread class, i.e., objects of this class
run autonomously. Each worker is given a reference to the work queue, from
which they must concurrently poll work units to process.

The monitors gather statistics about the usage of the memory, the CPU,
and the work queue. The memory monitor registers information about both
heap and non-heap memory; the worker monitor registers the user and the
system time worker objects have consumed; and, the queue monitor registers
the size of the queue and the total number of work units that have been
processed. Monitors were implemented as independent threads that run at
regular intervals, gather the previous information, store it in a file, and be-
come idle as soon as possible.

Schedulers are configured using a simple XML file with information about
the number of workers, the files to which the monitors dump statistics, the
frequency at which they must run, and the logging system used to report
warnings and errors. Figure 8 shows the sequence of operations involved in
the initialisation of a scheduler. The first operation loads the configuration
file and analyses it; then, the logging system is started, and a work queue is
created.

Note that engines are not started when they are created. It is the user
who must decide when to start them using the start operation. This opera-
tion causes the invocation of two other operations, namely: startMonitors and
startWorkers. The former starts the monitors that have been activated in the
configuration file, cf. Figure 9, and the later creates and starts the workers.

Figure 10 shows the sequence of operations required to create and start
the workers. Note that they are started asynchronously by invoking operation
start. The business logic of a worker is defined inside its doWork operation.
This operation implements a loop that enables the workers to poll the work
queue as long as the scheduler is not stopped. When a work unit is polled,
the worker first checks its scheduled execution time; if it has expired, then
the task can be executed immediately; otherwise, the work unit is delayed
until the deadline expires. Note that this strategy allows workers to keep
working as long as there is a task ready to be executed.

Processing a work unit requires invoking operation execute on the associ-

12



Figure 9: Creating and starting monitors.

ated task, which first packages the input messages and then invokes operation
doWork, which depends completely on the task toolkit being used. Then, the
task writes its output messages to the appropriate slot, which in turn no-
tifies the tasks that read from them. These tasks then determine if they
become ready for execution or not; in the former case, the tasks notify the
container to which they belong. Containers of tasks propagate every noti-
fication they receive to the scheduler. For every task notification that the
scheduler receives, it creates a new work unit and appends it to the work
queue, cf. Figure 11.

13



Figure 10: Creating and starting workers.

14



Figure 11: Executing a WorkUnit.

15



Figure 12: Task model in the toolkit.

3. The general-purpose toolkit layer

The framework provides two extension points, namely: Task and Adapter.
We have designed a core toolkit that provides extensions to deal with a
variety of tasks that support the majority of integration patterns in the
literature (Hohpe and Woolf, 2003), and provide active and passive adapters
that enable the use of several low-level communication protocols.

This toolkit provides extensions to the Task class, cf. Figure 12. In the
following descriptions we use term schema to refer to the logical structure
of the body of a message. It may range from a DTD or an XML schema to
a Java class. The first level of extension is composed of additional abstract
classes that are intended to make it explicit several categories of integration
patterns, namely:

Router: a router is a task that does not change the messages it processes
at all, but routes them through a process. This includes filtering out
messages that do not satisfy a condition or replicating a message, to
mention a few tasks in this category.

Modifier: a modifier is a task that adds data to a message or removes data
from it as long as this does not result in a message with a different
schema. This includes enriching a message with contextual information
or promoting some data to its headers, to mention a few examples in
this category.

16



Figure 13: Adapter model in the toolkit.

Transformer: a transformer is a task that translates one or more messages
into a new message with a different schema. Examples of these tasks
include splitting a message into several ones or aggregating them back.

StreamDealer: a stream dealer is a task that deals with a stream of bytes
and helps zip/unzip, encrypt/decrypt, or encode/decode it.

Mapper: a mapper is a task that changes the representation of the messages
it processes, e.g., from a stream of bytes into an XML document.

Communicator: a communicator is a task that encapsulates an adapter. Com-
municators serve two purposes: first, they allow adapters to be exported
to a registry so that they can be accessed remotely; second, a commu-
nicator can be configured to poll periodically a process or application
using an adapter.

There is a package associated with every of the previous tasks. They pro-
vide a variety of specific-purpose implementations in each integration pattern
category (Frantz et al., 2011).

In the previous section, we mentioned that ports use communicators to
communicate with other processes or applications. As we mentioned before,
they rely on adapters, which can be either active or passive, cf. Figure 13. An
active adapter allows to poll the process or application with which it interacts
periodically; contrarily, a passive adapter aims to export an interface to a
registry, so that other applications or processes can interact with it. Note
that entry and exit ports can be implemented using either active or passive
adapters.

17



The active package is divided into two packages to provide implementa-
tions that are based on the JBI and the RMI protocols, respectively. Note
that supporting JBI adapters allows to plug Guaraná SDK into a variety of
ESBs; for example, our reference implementation is ready to be plugged
into Open ESB (Rademakers and Dirksen, 2009). This, in turn, allows
Guaraná SDK processes to have access to a variety of applications in cur-
rent software ecosystems, including files, databases, web services, RSS feeds,
SMTP messaging systems, JMS queues, DCOM servers, and so on. The rmi
package provides several implementations that are intended to be used to
interact with an RMI-compliant server.

4. Experimental study

Camel, Spring Integration, and Mule are the most closely-related propos-
als. They are based on the catalogue of integration patters by Hohpe and
Woolf (2003), and support the core concepts of pipes, filters, and resource
adapters. These tools provide a graphical editor and an API that can be used
to implement integration solutions at a high level of abstraction using the
editor or at a low level of abstraction by coding integration solutions using
the APIs.

Given two different software systems, the only totally accurate means to
determine which one is more maintainable and adaptable is to use them in
two projects in which software engineers with very similar skills are asked to
maintain and adapt them for a particular purpose. Unfortunately, that does
not make sense in an industrial environment because of the costs involved.
This has motivated many researchers to devise measures that are correlated
to the effort required to maintain and adapt a piece of software (Lanza and
Marinescu, 2006; Lajios, 2009; Herraiz et al., 2009; Risi et al., 2013; Li and
Henry, 1993; Sheldon et al., 2002; Bocco et al., 2005; Mouchawrab et al.,
2005; Briand et al., 1998; Chidamber and Kemerer, 1994; Henderson-Sellers,
1996; Martin, 2002; McCabe, 1976). Many of which have been validated in
real-world projects (Burger and Hummel, 2012; Mordal-Manet et al., 2013;
Tempero et al., 2008; Balmas et al., 2009; Lanza and Marinescu, 2006). The
conclusion is that these measures can be effectively used in practice to com-
pare two software systems regarding maintainability and adaptability. In the
following, we detail the experimental study we have conducted and that has
demonstrated that Camel, Spring Integration, and Mule may have problems
regarding maintenance. Section 4.1 introduces twenty five maintainability

18



measures from the literature; Section 4.2 presents the results for every main-
tainability measure regarding the analysed tools; and, Section 4.3 provides a
statistical analysis on these results.

4.1. Evaluation measures
Since we are interested in how maintainable they are, we have used several

measures to estimate maintainability that were proposed in the literature.
The measures we have used in this article were classified either being related
to Size, Coupling, Complexity, or Inheritance, based on the proposal by
Lanza and Marinescu (2006). In the following we introduce these categories:

Size measures

The size of a software system is influenced by the number of packages,
classes, interfaces, attributes, methods, and their parameters. The measures
in this group allow to understand how big a software system is.

NOP: Number of packages that contain at least one class or interface. This
measure can be used as an indicator of how much effort it is required
to understand how packages are organised; note that this provides the
overall picture of the design of a system (Dong and Godfrey, 2009).
The greater this value, the more effort shall be required.

NOC: Number of classes. This and the following measure (NOI) can be
used as indicators of how much effort shall be required to understand
the source code of a software system. The grater this value, the more
difficult it is to understand a software system.

NOI: Number of interfaces. It is commonly agreed that the lager the number
of interfaces, the easier to a adapt a software system.

LOC: Number of lines of code, excluding blank lines and comments. In
general, the greater this value, the more effort shall be required to
maintain a software system.

NOM: Number of methods in classes and interfaces. This measure can
be used as an indicator for the potential reuse of a class. According
to Lorenz and Kidd (1994), and Chidamber and Kemerer (1994), a large
number of methods may indicate that a class is likely to be application
specific, limiting the possibility of reuse.

19



NPM: Number of parameters per method. This measure can be used as an
indicator of how complex it is to understand and use a method. Ac-
cording to Henderson-Sellers (1996), the number of parameters should
not exceed five. If it does, the author suggest that a new type must
be designed to wrap the parameters into a unique object. The greater
this value, the more difficult it is to understand a method.

MLC: Number of lines in methods, excluding blank lines and comments.
According to Henderson-Sellers (1996), this value should not exceed
fifty. If it does, the author suggests to split this method into other
methods to improve readability and maintainability. The greater this
value, the more difficult it is to understand and maintain a method.

NSM: Number of static methods. This measure can be used as an indicator
of how well implemented a piece of code is. The greater this value, the
more likely that the code tends to be based on the classical procedural
paradigm and not on the object-oriented paradigm.

NSA: Number of static attributes. This measure can be used as an indicator
of how difficult it is to reason about the state of a software system when
testing. The greater this value, the more difficult testing.

NAT: Number of attributes. This measure can be used as an indicator of
how complex it is to understand a class. The greater this value, the
more difficult it is to understand the state of a class.

Coupling measures

An important characteristic of the object-oriented paradigm is the en-
capsulation of data and the collaboration of objects to perform system func-
tionalities. The measures in this group give an indication of how coupled the
classes of a software system are.

LCM: Lack of cohesion of methods. In this context, cohesion refers to
the number of methods that share common attributes in a class. It
is computed with the Henderson-Sellers LCOM* method (Henderson-
Sellers, 1996). A low value indicates a cohesive class; contrarily, a value
close to one indicates lack of cohesion and suggests that the class might
better be split into two or more classes because there can be methods
that should probably not belong to that class.

20



AFC: Afferent coupling. This measure is defined as the number of classes
outside a package that depend on one or more classes inside that pack-
age. The greater this value, the more complex maintenance becomes
because there are more dependencies between classes (Martin, 2002;
Offutt et al., 2008; Yu, 2008). Furthermore, larger values of afferent
coupling can be used as an indicator that the package is critical for the
software system and then maintenance in this package must be per-
formed carefully not to introduce problems in the dependent classes.

EFC: Efferent coupling. This measure is defined as the number of classes
inside a package that depend on one or more classes outside the package.
The greater this value, the more likely that maintenance shall have an
impact on a package (Martin, 2002; Offutt et al., 2008; Yu, 2008).

FAN: Number of called classes. This measure can be used as an indicator of
how dispersed method calls are in classes of a software system (Lorenz
and Kidd, 1994). The greater this value, the more complex is a method
call because every call is supposed to involve other classes to be com-
pleted.

LAA: Locality of attribute accesses. This measure can be used as an indi-
cator of how dependent the methods of a class can be regarding the
attributes of other classes. The greater this value, the more a method
of a class uses attributes from other classes.

CDP: Coupling dispersion. This measure can be used as an indicator of bad
method design, since a method may be executing more than one thing
and then can be split reducing its coupling. The greater this value,
the more likely that there is an improper distribution of functionality
amongst the methods of a software system.

CIT: Coupling intensity. This measure can be used as an indicator of how
dependent a method is, since it measures the number of distinct meth-
ods that are called by the measured method. The greater this value,
the more likely there is an excessive coupling amongst the methods of
a software system.

21



Complexity measures

The notion of complexity is important in software systems, chiefly if the
software has to be maintained. The measures in this group allow to under-
stand how complex a software system is.

ABS: Degree of abstractness of a software system. This measure can be
used as an indicator of how customisable a software system is (Martin,
2002). The greater this value, the easier to customise the software
system.

WMC: Weighted sum of the McCabe cyclomatic complexity (McCabe, 1976)
for all methods in a class. This measure can be used as an indicator of
how difficult understanding and then modifying the methods of a class
shall be (Chidamber and Kemerer, 1994). The greater this value, the
more effort is expected to maintain a class.

MCC: The McCabe cyclomatic complexity. This measure can be used as
an indicator of how complex the algorithm in a method is. According
to McCabe (1976), this value should not exceed ten. The greater this
value, the more difficult it is to maintain a piece of code.

WOC: Weight of class. This measure indicates the ratio of accessor meth-
ods regarding other methods that provide services (Marinescu, 2002).
The greater this value, the more class interfaces consists of accessor
methods, which indicates that classes are not too complex.

DBM: Depth of nested blocks in a method. This measure can be used as an
indicator of how expensive debugging a piece of code can be. According
to Henderson-Sellers (1996), this value should not exceed five. If it
does, the author suggests that the method should be broken into other
methods. The greater this value, the more complex an algorithm is.

Inheritance measures

A well-known characteristic in the object-oriented paradigm is code reuse
by means of the inheritance of functionalities amongst classes. Measures
in this group allow to understand how much and how well the concept of
inheritance is used in a software system.

22



DIT: Depth of Inheritance Tree. Inheritance is a mechanism that increases
core reuse (Alkadi and Alkadi, 2003). This measure can be used as an
indicator of how complicated maintaining a class can be. The greater
this value, the more difficult to maintain a software system.

NOH: Number of immediate children classes of a class. This measure can
be used as an indicator of the potential impact that a class may have
in a software system if it is modified (Chidamber and Kemerer, 1994).
The greater this value, the greater the chances that the abstraction
defined by the parent class is poorly designed.

NRM: Number of overriden methods. This measure can be used to indicate
how adaptable a class is with respect to its ancestors (Lorenz and Kidd,
1994).The greater this value, the more likely that the inheritance mech-
anism is being used to adapt a class instead of just providing additional
services to the parent class.

4.2. Results of the analysis
We have conducted an experimental study in order to compute the main-

tainability measures regarding the core implementation of Camel, Spring
Integration, and Mule, i.e., we do not take into account the code required to
implement the adapters that are required to interact with the applications
being integrated. We do not consider this code because it is peripheral and,
more often than not, comes from other open-source projects that are main-
tained separately and then the comparison would be totally unfair. The core
implementation of these proposals is comparable because they provide similar
functionalities, which aim at providing support for the integration patterns
documented by Hohpe and Woolf (2003). Table 1 summarises the results and
compares them with the results for core implementation of Guaraná SDK.

The architecture of the tools we have analysed is organised into several
packages: 54 in Camel, 32 in Spring Integration, and 124 in Mule. Al-
though Mule has more than double as many packages as Camel, they have
approximately the same total number of classes in their packages. Neverthe-
less, there are cases in which the maximum number of classes in a package
reaches 96 in Camel, 58 in Spring Integration, and 51 in Mule. These values
show that Camel has almost double as many classes in a package as Spring
Integration or Mule. The same happens regarding the number of interfaces.
Consequently, Camel has the highest standard deviation and mean values per

23



Total Mean Dev. Max Total Mean Dev. Max Total Mean Dev. Max Total Mean Dev. Max

NOP 54 - - - 32 - - - 124 - - - 18 - - -

NOC 730 13.52 19.55 96 269 8.41 10.52 58 733 5.91 7.40 51 79 4.39 3.09 11

NOI 140 2.59 9.07 58 40 1.25 1.84 9 209 1.69 3.28 18 9 0.50 0.76 2

LOC 62,439 - - - 14,929 - - - 67,090 - - - 2,878 - - -

NOM 7,015 9.61 15.36 192 1,431 5.32 5.60 39 5,158 7.04 10.23 129 369 4.67 4.61 24

NPM - 0.93 1.05 11 - 1.13 0.94 9 - 0.92 1.07 19 - 1.20 1.04 4

MLC 34,839 4.52 8.15 141 8,264 5.65 9.59 110 35,989 6.16 10.99 180 1,748 4.72 6.43 54

NSM 709 0.97 4.95 74 31 0.12 0.73 8 686 0.94 9.41 244 1 0.01 0.11 1

NSA 291 0.40 1.07 16 109 0.41 1.52 13 669 0.91 3.66 81 30 0.38 1.33 10

NAT 1803 2.47 4.17 62 474 1.76 2.51 16 1417 1.93 3.21 31 87 1.10 2.14 12

LCM - 0.29 0.35 1 - 0.22 0.33 0.94 - 0.23 0.34 1.33 - 0.14 0.27 0.91

AFC - 30.63 89.34 542 - 12.69 26.65 146 - 22.90 56.25 493 - 6.94 14.33 47

EFC - 12.54 17.83 87 - 8.44 9.84 55 - 6.22 6.76 38 - 4.17 2.81 11

FAN 3,637 3.74 - 74 642 1.73 - 40 3,765 3.60 - 65 175 1.54 - 11

LAA 7,280.08 0.97 - 1 1,421.11 0.98 - 1 6,254.97 0.98 - 1 430.44 0.95 - 1

CDP 874.74 0.12 - 1 124.60 0.09 - 1 940.01 0.15 - 1 35.40 0.08 - 1

CIT 2,320 0.31 - 35 255 0.18 - 19 2,273 0.35 - 30 74 0.16 - 6

ABS - 0.15 0.21 1 - 0.27 0.25 1 - 0.33 0.33 1 - 0.54 0.35 1

WMC 12,903 17.68 27.37 346 2,628 9.77 11.27 68 10,537 14.38 21.92 262 498 6.30 6.30 37

MCC - 1.67 2.06 46 - 1.80 2.04 30 - 1.80 2.01 33 - 1.35 0.91 8

WOC 581.22 0.60 - 1 178.43 0.48 - 1 658.82 0.63 - 1 74.10 0.65 - 1

DBM - 1.37 0.79 8 - 1.44 0.86 6 - 1.43 0.87 8 - 1.24 0.74 4

DIT - 2.22 1.33 6 - 2.45 1.40 6 - 2.02 1.30 7 - 3.03 1.34 5

NOH 493 0.68 3.77 69 147 0.55 1.54 11 337 0.46 1.82 28 59 0.75 2.05 10

NRM 357 0.49 1.06 8 69 0.26 0.66 5 351 0.49 1.02 9 70 0.89 1.01 3

Mule Guaraná

S
iz
e

C
o
u
p
li
n
g

C
o
m
p
le
x
it
y

In
h
e
ri
ta
n
ce

Measure
Camel Spring Integration

NOP = Number of packages; NOC = Number of classes; NOI = Number of interfaces; LOC = Number
of lines of code; NOM = Number of methods in classes and interfaces; NPM = Number of parameters

per method; MLC = Number of lines in methods, excluding blank lines and comments; NSM = Number
of static methods; NSA = Number of static attributes; NAT = Number of attributes; LCM = Lack of
cohesion of methods; AFC = Afferent coupling; EFC = Efferent coupling; FAN = Number of called

classes; LAA = Locality of attribute accesses; CDP = Coupling dispersion; CIT = Coupling intensity;
ABS = Degree of abstractness of a software system; WMC = Weighted sum of the McCabe cyclomatic
complexity for all methods in a class; MCC = The McCabe cyclomatic complexity; WOC = Weight of

class; DBM = Depth of nested blocks in a method; DIT = Depth of inheritance tree; NOH = Number of
immediate children classes of a class; NRM = Number of overriden methods.

Table 1: Maintainability measures of Camel, Spring Integration, Mule, and Guaraná SDK.

package regarding both, classes and interfaces, which has an impact on the
understandability of its packages. Spring Integration is the only tool that has
a low value for the standard deviation regarding the number of interfaces.
The architecture of Guaraná SDK is organised into 18 packages, and the
maximum number of classes in a package is no more than 11. Furthermore,
Guaraná SDK provides no more than 9 interfaces in these packages. The
standard deviation computed for the number of classes and interfaces per
package is very low, 3.09 and 0.76, respectively. These values indicate that

24



maintenance in Guaraná SDK is not expected to be difficult.
Other values that are impressive for these tools are regarding the total

number of lines of code, which is very high in every tool, chiefly for Camel
and Mule. These tools are 62, 439 and 67, 090 lines of code respectively, con-
trarily to 14, 929 in Spring Integration. The implementation of Guaraná SDK
has a total number of 2, 878 lines of code, which represents a big difference
compared with the other tools. When analysing the methods in classes and
interfaces, we found that Camel has 7, 015 methods compared to the 1, 431
and the 5, 158 found for Spring Integration and Mule, respectively. Most
probably, the difference amongst Spring Integration and the other tools is be-
cause it has less than a half the number of classes and interfaces of Camel and
Mule. The values that stand out are the maximum number of methods per
class/interface computed in Camel and Mule, which are 192 and 129 respec-
tively, contrarily to 39 in Spring Integration. Guaraná SDK has 369 methods
in total, with a maximum number of 24 methods per class/interface. If we
look at the maximum number of parameter per method, it is also impressive
how large it is, chiefly in Camel and Mule: 11 and 19 respectively. Spring
Integration has a maximum of 9 parameters. These values indicate that
some classes in Camel, Spring Integration, and Mule, are likely too applica-
tion specific, with a limited possibility to be reused; furthermore, this makes
some of their methods difficult to understand, chiefly in the case of Camel
and Mule. Guaraná SDK has no more than 4 parameters per method, which
indicates that classes in Guaraná SDK are expected to be more reusable and
its methods not so difficult to understand. Counting the number of lines of
code inside methods, we found Camel has a total number of 34, 839, Spring
Integration has 8, 264, and Mule has 35, 989, which if compared to the total
number of lines of code, represents 0.55%, 0.55%, and 0.53% of these values,
respectively. It means there are many attributes declared in classes. The
maximum value computed demonstrate that there are some methods with
until 141 lines of code in Camel, 110 in Spring Integration, and 180 in Mule.
These values indicate more effort might be necessary to maintain and un-
derstand the methods in these tools. Guaraná SDK has a total number of
1, 748 lines of code inside methods, which, if compared to its total number
of lines of code, represents 0.61% of this value. Furthermore, there is no
method with more than 54 lines of code, being the average 4.72 lines of code
per method. These values indicate that our classes are expected to be easier
to understand and maintain.

If we look at the number of static methods, Camel and Mule have a

25



similar mean value per class, respectively 0.97 and 0.94. Contrarily, Spring
Integration has a mean of 0.12 static methods per class. The difference
between these tools is more evident when looking at the maximum number of
static methods in a class. Whereas Camel and Mule have respectively 74 and
244, Spring Integration has 8. In Guaraná SDK these values are increadible
low; the maximum number of static methods is no more than 1, and the mean
value is 0.01, thus indicating the code follows correctly the object-oriented
paradigm. Considering the number of static attributes, there is also a big
different amongst the analysed tools. Mule has an impressive number of 669
static attributes in total, whereas Camel and Spring Integration have 291
and 109, respectively. Such values indicate it must be difficult to reason
about the state of these tools when testing has to be performed. Contrarily,
Guaraná SDK has only 30 static attributes in total, which indicates reasoning
about its state shall be easier. Regarding the number of attributes, the total
values for Camel and Mule are still very high, 1, 803 and 1, 417, respectively.
These values correspond to a mean of 2.47 and 1.93 attributes per class,
reaching Camel the impressive number of 62 attributes in a class. Spring
Integration has a total of 474 attributes, a mean of 1.76, and no more than
16 attributes in a class. In Guaraná SDK the total number of attributes is
87, which corresponds to a mean of 1.10 attributes per class, suggesting it
is not complex to understand the state of its classes as it can be in Camel,
Spring Integration, and Mule.

The mean and the maximum values for the lack of cohesion of methods
is similar in every tool. Camel has 0.29 and 0.35, Spring Integration has 0.22
and 0.33, and Mule has 0.23 and 0.34. In Guaraná SDK, the lack of cohe-
sion of methods is very low, it presents a mean of only 0.14. Regarding the
coupling of classes, the values for the afferent and efferent coupling in every
tool are very high. Camel has the highest value for the afferent coupling, fol-
lowed by Mule and then Spring Integration, with a mean of 30.63, 12.69, and
22.90, respectively. It is also very impressive the standard deviation, chiefly
for Camel and Mule, which are 89.34 and 56.25, respectively. The maximum
values are also very high, being 542 for Camel, 146 for Spring Integration, and
493 for Mule. These values suggest that much attention must be paid when
performing maintenance in the classes of a package. The mean for the efferent
coupling varies from 12.54 in Camel and 8.44 in Spring Integration, to 6.22
in Mule. The maximum values are not so impressive as the afferent coupling,
but they are still very high. In Camel, the maximum efferent coupling is 87;
in Spring Integration, it is 55; in Mule, it is 38. These figures suggest that

26



the classes inside a package have a large number of dependencies on outside
classes and maintenance has to be done carefully; as a conclusion, the impact
on maintenance should not be neglected at all. Regarding the coupling of
classes, the values for the afferent and efferent coupling in Guaraná SDK are
not very high. The afferent coupling has values 6.94, 14.33, and 47 as mean,
standard deviation, and maximum, respectively. The efferent coupling has
values 4.17, 2.81, and 11 as mean, standard deviation, and maximum, respec-
tively. The average afferent and efferent coupling in Guaraná SDK are 15.13
and 4.90 less than in other software tools, respectively. These values suggest
that the classes in Guaraná SDK do not have a high number of dependencies
and maintenance is expected to be easy.

Considering the number of called classes, once more Camel and Mule have
very high values in total, compared to Spring Integration, respectively 3, 637,
3, 765, and 642. If we look at the maximum number of calls a class receives,
Camel has 74, Spring Integration 40, and Mule 65. In Guaraná SDK the
total number of called classes is 175 and the maximum number of calls a
class receives is no more than 11. These values indicate that method calls in
Guaraná SDK are not complex. The locality of attribute accesses is similar
in every tool. If we consider the mean value, Camel, Spring Integration, and
Mule have 0.97, 0.98, and 0.98, respectively. The mean in Guaraná SDK
is lower, 0.95. Regarding the coupling dispersion, the mean value indicates
that Mule has the highest dispersion with 0.15, followed by Camel and Spring
Integration, respectively with 0.12 and 0.09. Mule has also a very high value
in total, 940.01, compared to Camel and Spring Integration with 874.74
and 124.60, respectively. These values indicate that chiefly Mule has an
improper distribution of functionality amongst its methods. The mean value
in Guaraná SDK is 0.08, which situates it close to Spring Integration. If
we look at the maximum values for the coupling intensity of these software
tools, these values demonstrate an excessive coupling amongst the methods
in these tools, since the values in Camel, Spring Integration, and Mule are
35, 19, and 30, respectively. Contrarily, in Guaraná SDK the maximum value
is 6, which indicates a low coupling amongst its methods.

The values for the degree of abstractness indicates that Camel is the less
abstract tool. The mean value for Camel is 0.15, followed by 0.27 for Spring
Integration, and 0.33 for Mule. The results indicate that these tools are
not so easy to customise, chiefly Camel because its mean value is very low.
The degree of abstractness in Guaraná SDK is very high. Its mean value is
0.54, which situates Guaraná SDK 0.29 in average more abstract than the

27



other software tools. These values suggest that it shall not be complicated to
customise Guaraná SDK. The weighted method complexity computed also
demonstrates a high cyclomatic complexity within classes, chiefly for Camel
and Mule. In these tools, the total weighted method complexity was 12, 903
and 10, 537, respectively. For Spring Integration, the cyclomatic complexity
is 2, 628, which is not so high when compared to Camel and Mule. Neverthe-
less, not only the total cyclomatic complexity is high, but also the mean, the
standard deviation, and the maximum. Camel, Spring Integration, and Mule
have maximum values of 346, 68, and 262, respectively. In Guaraná SDK, the
total value is 498, the mean and the standard deviation were 6.30, and the
maximum is 37. These values indicate a low cyclomatic complexity within the
classes of Guaraná SDK. The values computed for the McCabe cyclomatic
complexity indicate that there are cases in which it is extremely high. This
is indicated by the maximum values, which reach 46, 30, and 33 in Camel,
Spring Integration, and Mule, respectively. Consequently, they are also very
complex tools, which may have a serious impact on their maintenance. The
values computed for the McCabe cyclomatic complexity have indicated that
the maximum value in Guaraná SDK is 8, which situates it with 28.33 less
complexity than other software tools. These values indicate the architecture
in Guaraná SDK is well designed and maintenance is expected to be easy.

The mean value for the weight of class indicates classes in Spring Integra-
tion are complex. The mean value for Spring Integration is 0.48, followed by
0.60 for Camel, and 0.63 for Mule. In Guaraná SDK, the mean value is 0.65,
which indicates classes in Guaraná SDK are not too complex. The depth of
nested blocks in a method is similar in every tool. If we consider the mean
and maximum values, Camel has 1.37 and 8, Spring Integration has 1.44 and
6, and Mule has 1.43 and 8, respectively. In Guaraná SDK, the mean and
maximum values for the depth of nested blocks is 4 and 1.24, respectively.
These values indicate debugging a piece of code in Guaraná SDK shall not
be expensive as in the other tools.

The depth of inheritance tree in Mule counts for a maximum value of
7, which makes more complicated to maintain a class in this tool. Camel
and Spring Integration have equal values, 6. In Guaraná SDK the maximum
value is no more than 5. The maximum number of immediate children classes
of a class also varies very much: 69 in Camel, 11 in Spring Integration, and
28 in Mule. If considered the mean and the standard deviation values per
class, Camel has the highest values, which indicates that the abstraction
defined by parent classes tend to be poorly designed. The maximum number

28



Tool Total Mean

Guaraná SDK 1.56 1.24

Spring Integration 2.56 2.08

Camel 2.64 3.16

Mule 3.24 3.52

Table 2: Empirical Rankings.

of immediate children classes of a class in Guaraná SDK is no more than 10,
with a mean of 0.75 per package. These values indicate that the abstraction
defined by the parent class is well designed in Guaraná SDK. Regarding
the number of overriden methods, Spring Integration has the lowest mean
value amongst the analysed tools, and Camel and Mule have the same value,
respectively with 0.26, 0.49, and 0.49. In Guaraná SDK the mean value is
0.89, which indicates classes in this tool are more adaptable than in Camel,
Spring Integration, and Mule.

From the analysis of the maintainability measures, it follows that the tools
we have analysed may have problems regarding maintenance, chiefly adaptive
maintenance, which is our main concern in this article. The maintainability
measures computed for Guaraná SDK provide better values, which suggests
that our proposal is more maintainable and thus easier to adapt to a specific
context than Camel, Spring Integration, or Mule.

4.3. Statistical analysis
We have first computed the values of the measures from the source code

of each tool, and we have got the results in Table 1. We first have analysed if
these values can be considered sampled from a Normal distribution using the
Kolmorogov-Smirnov’s test and the Shapiro-Wilk’s test using the standard
significance level α = 0.05. The results of these tests prove that none of
the measures can be considered to be distributed normally, which justifies to
perform non-parametrical tests (Sheskin, 2012).

The steps to perform the non-parametrical tests were the following: a)
compute the rank of each technique from the evaluation results after nor-
malising the corresponding measures to interval [0, 1]; b) determine if the
differences in ranks are significant or not using Iman-Davenport’s test; c)
if the differences are significant, then compute the statistical ranking using
Bergmann-Hommel’s test on every pair of tool. We have performed the tests
on both the totals and the mean values of the measures, and we have got
similar results.

29



Test Total Mean

Statistic 9.84 44.18

P-value 1.61E-5 3.33E-16

Table 3: Results of Iman-Davenport’s test.

Comparison Statistic ap-value Tool Rank

Mule X Guaraná SDK 4.60 2.52E-5 Guaraná SDK 1

Camel X Guaraná SDK 2.95 9.29E-3 Spring Integration, Camel, Mule 2

Spring Integration X Guaraná SDK 2.73 0.01 - -

Spring Integration X Mule 1.86 0.18 - -

Camel X Mule 1.64 0.18 - -

Camel X Spring Integration 0.21 0.82 - -

Comparison Statistic ap-value Tool Rank

Mule X Guaraná SDK 6.24 2.56E-9 Guaraná SDK 1

Camel X Guaraná SDK 5.26 4.36E-7 Spring Integration 2

Spring Integration X Mule 3.94 2.40E-4 Camel, Mule 3

Camel X Spring Integration 2.96 3.10E-3 - -

Spring Integration X Guaraná SDK 2.30 4.28E-2 - -

Camel X Mule 0.98 3.24E-1 - -

a) Total values

b) Mean values

Table 4: Results of Bergmann-Hommel’s test.

Table 2 shows the empirical rankings that we got; note that Guaraná SDK
ranks the first regarding both the total and the mean values. Then we used
Iman-Davenport’s test to check if there are statistically significant differ-
ences in these ranks at the standard significance level (α = 0.05). Table 3
shows the results; note that the p-value is largely smaller than the standard
significance level, which is a strong indication that the empirical ranks are
different from a statistical point of view. As a conclusion, it makes sense to
perform Bergmann-Hommel’s test to rank every pair of proposals. Table 4
shows the results. Regarding the total measures, note that the comparisons
of Guaraná SDK with the other techniques results in adjusted p-values that
are always significantly smaller than the significance level, which is a strong
indication that Guaraná SDK’s measures are better than the others; note,
too, that the adjusted p-values that corresponds to the remaining compar-
isons are not smaller than the significance level, which indicates that there
are not significant differences amongst the measures of the other tools. Re-

30



garding the mean measures, the results are similar; the only difference is that
Guaraná SDK is significantly better than Spring Integration, which, in turn,
is significantly better than both Camel and Mule at the standard significance
level.

As a conclusion, we have proved that there is enough statistical evidence
in the measures that we have collected to prove that Guaraná SDK outper-
forms the other proposals regarding maintainability.

5. An industrial experience

We have worked on an industrial experience in co-operation with an spin-
off to evaluate the use of Guaraná SDK in industry, within the context of
health care systems, to demonstrate the viability of our proposal. The in-
dustrial experience was designed using the domain-specific language intro-
duced in Frantz et al. (2011) and implemented using Guaraná SDK. We
have measured the effort required to develop the integration solution for this
industrial experience and conducted a series of experiments to evaluate its
performance on the Runtime System, which is part of the core implemen-
tation of Guaraná SDK. The industrial experience consists of a real-world
integration problem that builds on a project to automate the registration of
new users into a unique repository of the Huelva’s County Council (Huelva,
Spain). This repository contains information about users that comes from
both a local application and a web portal. It is expected that every new
user is notified and provided with his/her digital certificate by secure e-mail.
In the following sections, we first describe the integration problem tackled
in the industrial experience; we then provide a solution model; we show the
effort employed in the development of the integration solution; and, finally,
we show the experimental results that we gathered.

5.1. The software ecosystem
The integration solution involves six applications, namely: Local Users,

Portal Users, LDAP, Human Resources System, Digital Certificate Platform,
and Mail Server. Each application runs on a different platform, and, except
for the LDAP, the Digital Certificate Platform, and the Mail Server, they
were not designed with integration concerns in mind.

The Local Users is the first application developed in house; it aims to
manage the county council information systems’ users. Note that, this is a
standalone application and does not provide an authentication service. The

31



Local Users

Portal Users

LDAP Mail Server

Human

Resources

System

+

+

Digital

Certificate

Platform

T3

T1

T2

S1

T4

T5

T7

T6

T8

P1

P2

P3 P4 P5 P6

P7 P8

Figure 14: The integration solution conceptual model.

Portal Users is an off-the-shelf application that the web portal uses to manage
its users. In addition, a unique repository for users has been set up using an
LDAP-based application, so that it can provide authentication access control
for several other applications inside the software ecosystem. The Human
Resources System is a legacy system developed in house to provide personal
information about the employees. It is a part of the integration solution since
we require information like name and e-mail to compose notification e-mails.
Another application developed in house is the Digital Certificate Platform,
which aims to manage digital certificates; it was designed with integration
concerns in mind. Amongst other services, this application can be queried
to get a URL that temporarily points to a digital certificate that users can
download after authenticating. Finally, the Mail Server runs the Council’s
e-mail service, which is used exclusively for notification purposes.

5.2. Integration solution
The integration solution we have devised is composed of one orchestration

process that exogenously co-ordinates the applications involved in the inte-
gration solution, cf. Figure 14. Some ports use text files to communicate with
Local Users, Portal Users, and LDAP; the Human Resources System is queried by

32



means of its database management system; and, the communication with the
Digital Certificate Platform and the Mail Server is performed by means of APIs.
Translator tasks were used to translate messages from canonical schemas into
the schemas with which the integrated applications work.

The workflow begins at entry ports P1 and P2, which periodically poll the
Local Users and Portal Users logs to find new users. Every port is provided with
only a communicator task, except for ports P1 and P2 that also have a mapper
task. In both ports, every user record results in a message that is added by the
communicators to their corresponding slots. The body of the message holds
the data that has been polled as a stream. Thus, mappers T1 and T2 map the
inbound messages onto outbound messages that conform to a canonical XML
schema that represents user records. Inside the process, task T3 gets messages
coming from both ports and adds them to slot S1. Replicator task T4 creates
two copies of every message it gets from this slot, so that one copy can
be used to query application Human Resources System by means of ports P3
and P4, for information about the employee who owns a user record. Next,
task T5 enriches the other correlated copy with the information returned by
the Human Resources System and then task T7 replicates this enriched message
with copies to the LDAP and the Digital Certificate Platform. The new user
record is written to the LDAP by means of exit port P7. Before querying the
Digital Certificate Platform, task T6 filters out messages that do not include an
e-mail address. Messages that go through task T8, which enriches them with
the corresponding certificate. Finally, exit port P8 communicates with the
Mail Server application to send the certificate and notify the employee about
his/her inclusion in the LDAP.

5.3. Development effort
We have used six measures to empirically estimate the amount of effort

involved in the development of the proposed integration solution. A software
engineer from the partner spin-off was randomly selected, amongst seven
candidates, to develop the proposed industrial experience. Every engineer
candidate had more than one year experience in developing integration solu-
tions using the integration patterns documented by Hohpe and Woolf (2003).
The design was assisted by a graphical editor and the implementation was
carried out by coding the integration solution using the command-query API
provided by Guaraná SDK. We measured the following variables:

Time to study the integration problem. Measures the total time an en-
gineer has spent to understand the integration problem. In this activity,

33



Measure Value

Time to study the integration problem 15 min

Time to design the integration solution 32 min

Time to design the message schemas 13 min

Time to implement the design of integration solution 87 min

Number of bugs detected 4

Number of modifications in the design 4

Table 5: Effort to develop the integration solution.

the applications involved, their communication layer, and the data they
share with the integration solution must be identified.

Time to design the integration solution. Measures the total time an
engineer has spent to produce a complete and ready to implement de-
sign of an integration solution for an integration problem.

Time to design the message schemas. Measures the total time an en-
gineer has spent to create the XML schemas used to represent the
information with which and integration solution deals.

Time to implement the design of integration solution. Measures the
total time an engineer has spent to produce the code that implements
the design of an integration solution; this time includes the time to test
it and correct bugs, besides the time to configure its binding compo-
nents.

Number of bugs detected. Registers the number of errors detected and
corrected by the engineer during the development of an integration
solution.

Number of modifications in the design. Registers the number of times
an engineer made important modifications to the design of an integra-
tion solution (e.g., new tasks were added or removed to/from the design
or data schemas were modified) after the first version was produced.

Table 5 presents the values obtained for each measure. The times spent to
study the integration problem and to design the message schemas were quite
short. The time to design the integration solution was expected to be shorter,
since this activity was assisted by a design tool. However, due to changes in

34



the data schemas, four modifications had to be done in the design, which had
a negative impact on the time spent in the design of the integration solution.
Otherwise, this time should be significantly reduced. The majority of the
time was spent in the implementation. It was already expected because the
implementation was carried out using a command-query API installed into
the Eclipse IDE tool.

5.4. Experimental results
We have conducted a series of experiments to evaluate the integration

solution on the Runtime System of Guaraná SDK. We used mock adapters,
i.e., adapters implemented in memory that simulate the functionality of a
real-world adapter and not on external software. This is a common feature
provided by integration frameworks in their core implementation. The mock
adapters allowed us to save the processing time required by the real-world
adapters based on JBI. Furthermore, by using mock adapters the execu-
tion of the integration solution depends only on the core implementation of
Guaraná SDK, and not on other external software. In each experiment we
measured the following variables:

Consumption of CPU Time per Thread: We use this variable to mea-
sure the average CPU times that the integration solution has consumed
to process all of the messages of an experiment. Note that we measured
CPU time per thread, i.e., the actual time the available threads took
to process the workload, including user and operating system time.
To measure this variable, we run the integration solution with a fixed
message production rate, a varying the number of threads (t), and a
varying number of messages (m). We introduced a 60-second delay be-
tween every two experiments. The message production rate considered
was one message every 5 milliseconds, we varied t in the range 1, 2, 4,
6, 8 threads, and m in the range 20, 000, 40, 000, 60, 000, ... , 200, 000
messages. In total, we ran a total of 125 experiments for the integration
solution to draw our conclusions on this variable.

Pending Messages: This variable measures the number of messages that
had not been processed yet right after the message production fin-
ishes. The experiments conducted to measure this variable consisted of
running the integration solution with a fixed number of messages per
experiment, a varying number of threads (t), and a varying message

35



production rate (r) to simulate heavily-loaded scenarios. We intro-
duced a 60-second delay between every two experiments. The total
number of messages in each experiment was 100, 000, we varied t in
the range 1, 2, 4, 6, 8 threads, and r in the range 200, 400, 600, ...
3, 000 messages per second. In total, we ran 375 experiments for the
integration solution to draw our conclusions on this variable.

We ran these experiments on a machine that was equipped with an Intel
Core i7 with four physical CPU threads that run at 2.93 GHz, and had 8
GB of RAM, Windows 7 Professional Service Pack 1, and Java Enterprise
Edition 1.6 64-bit installed. Each experiment was repeated 5 times and the
results were averaged in order to diminish the effects of unpredictable events
in the operating system. In every experiment the body of the messages hold
an actual document in XML format. Note that the size of a message being
processed by the integration solution varies, since it is modified and trans-
formed throughout the workflow. Thus, we have computed the average size
of the messages that belong to a same correlation processed in the integra-
tion solution. The result is an average message size of 1, 317.75 bytes for this
industrial experience.

Figure 15 presents our experimental results. The consumption of CPU
time grows linearly as the number of messages m increases, independently
from the number of threads t available. We performed a linear regression
analysis and confirmed the previous claim since the values we got for the
R2 coefficient were 0.994, 0.994, 0.996, 0.996, and 0.997 for 1, 2, 4, 6, and
8 threads, respectively. The graph depicted for this variable shows that the
consumption of CPU time per thread reduces considerably when adding more
threads until the limit of 4 threads. This behaviour is attributed to the limit
of four physical CPU threads in the processor. This explains why adding
more threads to the integration solution, does not result in a significant
reduction of the total CPU time per thread.

The graph depicted to show the number of pending messages, indicates
that the integration solution supports a message production rate r until 800
messages per second when using 4, 6, or 8 threads, since there are not any
pending messages when the message production finishes. A higher message
production rate r causes the integration solution to accumulate messages,
independently from the number of threads with which we have experimented.
If the message production rate r ranges from 1, 600 – 3, 000, then there is
not much difference in using 1 or 8 threads. With r = 200, messages do not

36



0

2

4

6

8

10

12

14

2
0

,0
0

0

4
0

,0
0

0

6
0

,0
0

0

8
0

,0
0

0

1
0

0
,0

0
0

1
2

0
,0

0
0

1
4

0
,0

0
0

1
6

0
,0

0
0

1
8

0
,0

0
0

2
0

0
,0

0
0

C
P

U
 T

im
e

 (
m

in
u

te
s)

Number of messages

Consumption of CPU Time per Thread

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

0

20,000

40,000

60,000

80,000

100,000

2
0

0

4
0

0

6
0

0

8
0

0

1
,0

0
0

1
,2

0
0

1
,4

0
0

1
,6

0
0

1
,8

0
0

2
,0

0
0

2
,2

0
0

2
,4

0
0

2
,6

0
0

2
,8

0
0

3
,0

0
0

N
u

m
b

e
r 

o
f 

m
e

ss
a

g
e

s

Messages per second

Pending Messages

1 Thread

2 Threads

4 Threads

6 Threads

8 Threads

Figure 15: Experimental results for the integration solution.

accumulate even if running the integration solution with only 1 thread. If
running the integration solution with 2 threads, no messages are accumulated
until r = 600. A similar behaviour when using 4–8 threads can be observed
in this experiment, which is attributed to the limit of four physical CPU
threads in the processor. Note that, despite the experiments have indicated
a weak performance in scenarios with a workload around 500 messages per
second, the Runtime System is able to handle a workload as high as 400
messages per second without getting collapsed.

6. Conclusions

Enterprise Application Integration is a corner-stoner for companies that
aim at reusing the applications that are available within their software ecosys-
tems to support and optimise their business processes. The catalogue of

37



integration patterns proposed by Hohpe and Woolf (2003) was adopted by
the Enterprise Application Integration community as a cookbook to design
and implement integration solutions. Furthermore, Camel, Spring Integra-
tion, and Mule range amongst the most popular tools available to design and
implement integration solutions building on Hohpe and Woolf’s catalogue.

Companies that provide Enterprise Application Integration solutions are
interested in software tools that can be easily adapted to focus on specific con-
texts. We have used twenty five of the measures proposed by Lanza and Mari-
nescu (2006); Lajios (2009); Herraiz et al. (2009); Risi et al. (2013); Li and
Henry (1993); Sheldon et al. (2002); Bocco et al. (2005); Mouchawrab et al.
(2005); Briand et al. (1998); Chidamber and Kemerer (1994); Henderson-
Sellers (1996); Martin (2002), and McCabe (1976) to evaluate the maintain-
ability of Camel, Spring Integration, and Mule. The results that we obtained
indicate that adapting these software tools for particular contexts may be
costly.

In this article we have presented Guaraná SDK, which is our software
development kit to implement integration solutions. Guaraná SDK provides
a number of classes and interfaces that implement the abstractions of the
domain-specific language introduced by Frantz et al. (2011), which we have
developed to design integration solutions building on integration patterns.

We have computed the maintainability measures regarding Guaraná SDK
and the results suggest that maintaining our proposal is easier than main-
taining Camel, Spring Integration, or Mule.

To confirm this findings we performed a statistical analysis based on
Kolmorogov-Smirnov’s test, Shapiro-Wilk’s test, Iman-Davenport’s test, and
Bergmann-Hommel’s test on the results obtained with the maintainability
measures. As a conclusion we proved that there is enough statistical evi-
dence in the measures that we have collected to prove that Guaraná SDK
outperforms the other proposals regarding maintainability.

Our proposal was applied to a real-world project in industry in collabo-
ration with a spin-off company. The integration solution in this industrial
experience was designed using the domain-specific language introduced in a
previous work (Frantz et al., 2011) and implemented using Guaraná SDK,
and run under very high workloads in the runtime system that is part of the
core implementation of Guaraná SDK. Despite the experiments have indi-
cated a weak performance in scenarios with a workload around 500 messages
per second, the Runtime System is able to handle a workload as high as 400
messages per second without getting collapsed.

38



Acknowledgements.

The research work on which we report in this article was supported
by the European Commission (FEDER), the Spanish and the Andalusian
R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-4100,
TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E, and
TIN2010-09988-E). Rafael Z. Frantz was also supported by the Evange-
lischer Entwicklungsdienst e.V. (EED). We would like to thank company
i2Factory, S.L. for trusting our results and developing a commercial version
of Guaraná SDK.

References

Alkadi, G., Alkadi, I., 2003. Application of a revised dit metric to redesign
an oo design. Journal of Object Technology 2, 127–134. doi:10.5381/jot.
2003.2.3.a3.

Balmas, F., Bergel, A., Denier, S., Ducasse, S., Laval, J., Mordal-Manet,
K., Abdeen, H., Bellingard, F., 2009. Software metric for Java and C++
practices (Squale Deliverable 1.1). Technical report. French Institute for
Research in Computer Science and Automation. URL: http://rmod.lille.
inria.fr/archives/reports/Balm09a-Squale-deliverable11-Metrics.pdf.

Bergin, S., Keating, J., 2003. A case study on the adaptive maintenance
of an Internet application. Journal of Software Maintenance 15, 254–264.
doi:10.1002/smr.275.

Bocco, M.G., Piattini, M., Calero, C., 2005. A survey of metrics for UML
class diagrams. Journal of Object Technology 4, 59–92. doi:10.5381/jot.
2005.4.9.a1.

Briand, L.C., Daly, J.W., Wüst, J., 1998. A unified framework for cohesion
measurement in object-oriented systems. Empirical Software Engineering
3, 65–117. doi:10.1023/A:1009783721306.

Burger, S., Hummel, O., 2012. Applying maintainability oriented software
metrics to cabin software of a commercial airliner, in: CSMR, pp. 457–460.
doi:10.1109/CSMR.2012.58.

39

http://dx.doi.org/10.5381/jot.2003.2.3.a3
http://dx.doi.org/10.5381/jot.2003.2.3.a3
http://rmod.lille.inria.fr/archives/reports/Balm09a-Squale-deliverable11-Metrics.pdf
http://rmod.lille.inria.fr/archives/reports/Balm09a-Squale-deliverable11-Metrics.pdf
http://dx.doi.org/10.1002/smr.275
http://dx.doi.org/10.5381/jot.2005.4.9.a1
http://dx.doi.org/10.5381/jot.2005.4.9.a1
http://dx.doi.org/10.1023/A:1009783721306
http://dx.doi.org/10.1109/CSMR.2012.58


Chen, J.C., Huang, S.J., 2009. An empirical analysis of the impact of soft-
ware development problem factors on software maintainability. Journal of
Systems and Software 82, 981–992. doi:10.1016/j.jss.2008.12.036.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object-oriented
design. IEEE Trans. Software Eng. 20, 476–493. doi:10.1109/32.295895.

Dong, X., Godfrey, M.W., 2009. Understanding source package organization
using the hybrid model, in: International Conference on Software Mainte-
nance, pp. 575–578. doi:10.1109/ICSM.2009.5306366.

Epping, A., Lott, C.M., 1994. Does software design complexity affect main-
tenance effort?, in: NASA/Goddard 19th Annual Software Engineering
Workshop, pp. 297–313. URL: http://tinyurl.com/Epping94.

Fowler, M., 2010. Domain-Specific Languages. Addison-Wesley.

Frantz, R.Z., Corchuelo, R., 2012. A software development kit to implement
integration solutions, in: 27th Symposium On Applied Computing, pp.
1647–1652. doi:10.1145/2245276.2232042.

Frantz, R.Z., Reina-Quintero, A.M., Corchuelo, R., 2011. A Domain-
Specific language to design enterprise application integration solutions.
International Journal of Cooperative Information Systems 20, 143–176.
doi:10.1142/S0218843011002225.

García-Jiménez, F., Martínez-Carreras, M., Gómez-Skarmeta, A., 2010.
Evaluating open source enterprise service bus, in: IEEE 7th International
Conference on e-Business Engineering, pp. 284–291. doi:10.1109/ICEBE.
2010.12.

Henderson-Sellers, B., 1996. Object-Oriented Metrics, Measures of Complex-
ity. Prentice Hall.

Herraiz, I., Izquierdo-Cortazar, D., Rivas-Hernández, F., 2009. Flossmetrics:
Free/libre/open source software metrics, in: CSMR, pp. 281–284. doi:10.
1109/CSMR.2009.43.

HIPAA, 2011. Health insurance portability and accountability act home.
URL: http://www.hipaa.com.

40

http://dx.doi.org/10.1016/j.jss.2008.12.036
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/ICSM.2009.5306366
http://tinyurl.com/Epping94
http://dx.doi.org/10.1145/2245276.2232042
http://dx.doi.org/10.1142/S0218843011002225
http://dx.doi.org/10.1109/ICEBE.2010.12
http://dx.doi.org/10.1109/ICEBE.2010.12
http://dx.doi.org/10.1109/CSMR.2009.43
http://dx.doi.org/10.1109/CSMR.2009.43
http://www.hipaa.com


HL7, 2011. Health level seven international home. URL: http://www.hl7.org.

Hohpe, G., Woolf, B., 2003. Enterprise Integration Patterns - Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley.

IEEE, 1990. IEEE Standard Glossary of Software Engineering Terminology.
IEEE Computer Society. URL: http://standards.ieee.org/findstds/standard/
610.12-1990.html.

ISO/IEC, 2001. International Standard ISO/IEC 9126, Software engineering
– Product Quality – Part1: Quality Model. Technical Report. International
Standard Organization.

ISO/IEC, 2011. International Standard ISO/IEC 25010, Systems and soft-
ware engineering – Systems and software Quality Requirements and Evalu-
ation (SQuaRE) – System and software quality models. Technical Report.
International Standard Organization.

Jorgensen, M., 1995. An empirical study of software maintenance tasks.
Journal of Software Maintenance 7, 27–48. doi:10.1002/smr.4360070104.

Lajios, G., 2009. Software metrics suites for project landscapes, in: CSMR,
pp. 317–318. doi:10.1109/CSMR.2009.22.

Lanza, M., Marinescu, R., 2006. Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer.

Li, W., Henry, S.M., 1993. Object-oriented metrics that predict maintain-
ability. Journal of Systems and Software 23, 111–122. doi:10.1016/0164-
1212(93)90077-B.

Lorenz, M., Kidd, J., 1994. Object Oriented Software Metrics. Prentice Hall.

Marinescu, R., 2002. Measurement and Quality in Object-Oriented Design.
Ph.D. thesis. Department of Computer Science, Politehnica University of
Timisoara.

Martin, R.C., 2002. Agile Software Development, Principles, Patterns, and
Practices. Prentice Hall.

41

http://www.hl7.org
http://standards.ieee.org/findstds/standard/610.12-1990.html
http://standards.ieee.org/findstds/standard/610.12-1990.html
http://dx.doi.org/10.1002/smr.4360070104
http://dx.doi.org/10.1109/CSMR.2009.22
http://dx.doi.org/10.1016/0164-1212(93)90077-B
http://dx.doi.org/10.1016/0164-1212(93)90077-B


McCabe, T.J., 1976. A complexity measure. IEEE Trans. Software Eng. 2,
308–320. doi:10.1109/TSE.1976.233837.

Mordal-Manet, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B.,
Ducasse, S., 2013. Software quality metrics aggregation in industry. Jour-
nal of Software: Evolution and Process 25, 1117–1135. doi:10.1002/smr.
1558.

Mouchawrab, S., Briand, L.C., Labiche, Y., 2005. A measurement framework
for object-oriented software testability. Information & Software Technology
47, 979–997. doi:10.1016/j.infsof.2005.09.003.

Offutt, J., Abdurazik, A., Schach, S.R., 2008. Quantitatively measuring
object-oriented couplings. Software Quality Journal 16, 489–512. doi:10.
1007/s11219-008-9051-x.

Rademakers, T., Dirksen, J., 2009. Open-Source ESBs in Action. Manning.

Risi, M., Scanniello, G., Tortora, G., 2013. Metric attitude, in: CSMR, pp.
405–408. doi:10.1109/CSMR.2013.59.

RosettaNet, 2011. RosettaNet home. URL: http://www.rosettanet.org.

Schneidewind, N.F., 1987. The state of software maintenance. IEEE Trans.
Software Eng. 13, 303–310. doi:10.1109/TSE.1987.233161.

Sheldon, F.T., Jerath, K., Chung, H., 2002. Metrics for maintainability of
class inheritance hierarchies. Journal of Software Maintenance 14, 147–160.
doi:10.1002/smr.249.

Sheskin, D.J., 2012. Handbook of Parametric and Nonparametric Statistical
Procedures. 5 ed., Chapman and Hall/CRC.

Swift, 2011. Society for worldwide interbank financial telecommunication
home. URL: http://www.swift.com.

Tempero, E.D., Noble, J., Melton, H., 2008. How do java programs use in-
heritance? an empirical study of inheritance in java software, in: ECOOP,
pp. 667–691. doi:10.1007/978-3-540-70592-5_28.

Yu, L., 2008. Common coupling as a measure of reuse effort in kernel-based
software with case studies on the creation of MkLinux and Darwin. Journal
of the Brazilian Computer Society 14, 45–55. doi:10.1007/BF03192551.

42

http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1002/smr.1558
http://dx.doi.org/10.1002/smr.1558
http://dx.doi.org/10.1016/j.infsof.2005.09.003
http://dx.doi.org/10.1007/s11219-008-9051-x
http://dx.doi.org/10.1007/s11219-008-9051-x
http://dx.doi.org/10.1109/CSMR.2013.59
http://www.rosettanet.org
http://dx.doi.org/10.1109/TSE.1987.233161
http://dx.doi.org/10.1002/smr.249
http://www.swift.com
http://dx.doi.org/10.1007/978-3-540-70592-5_28
http://dx.doi.org/10.1007/BF03192551

